Cglﬁlplete

Reference

& Poi L Refere ces,
and the Dynamic Allocation
Operators

325

326 C++: The Complete Reference

types. Here, they are discussed relative to objects. This chapter also looks at a
feature related to the pointer called a reference. The chapter concludes with an
examination of C++'s dynamic allocation operators.

In Part One, pointers and arrays were examined as they relate to C++'s built-in

___| Arrays of Objects

In C++, it is possible to have arrays of objects. The syntax for declaring and using an
object array is exactly the same as it is for any other type of array. For example, this
program uses a three-element array of objects:

#include <iostream>
using namespace std;

class cl {
int i;
public:
void set_i(int j) { i=j; }
int get_i() { return i; }
Y

int main()
{
cl ob(3];
int i;

for (i=0; 1i<3; i++) ob[i].set_i(i+1);

for(i=0; i<3; i++)
cout << ob[i].get_i() << "\n";

return 0;

This program displays the numbers 1, 2, and 3 on the screen.

If a class defines a parameterized constructor, you may initialize each object in
an array by specifying an initialization list, just like you do for other types of arrays.
However, the exact form of the initialization list will be decided by the number of
parameters required by the object's constructors. For objects whose constructors have
only one parameter, you can simply specify a list of initial values, using the normal
array-initialization syntax. As each element in the array is created, a value from the

hapter 13: Arrays, Pointers, References, and the Dynamic Allocation Gperators

ist is passed to the constructor’s parameter. For example, here is a slightly different
version of the preceding program that uses an initialization:

#include <iostream>

using namespace std;

class ¢l {
int 1;

public:
cl{int 3) { i=3j; } // constructor
int get_i() { return i; }

I

int main()

{

cl ob(3] = {1, 2, 3}; // initializers

for (i=0; 1<3; 1i++)

cout << obli].get_1i() << "\n";

return 0;

As before, this program displays the numbers 1, 2, and 3 on the screen.
Actually, the initialization syntax shown in the preceding program is shorthand for
this longer form:

cl obl3] = { <l(1), cl(2), cl(3) };

Here, the constructor for ¢l is invoked explicitly. Of course, the short form used in the
program is more common. The short form works because of the automatic conversion
that applies to constructors taking only one argument (see Chapter 12). Thus, the short
form can only be used to initialize object arrays whose constructors only require one
argument.

If an object's constructor requires two or more arguments, you will have to use the
longer initialization form. For example,
#include <iostream>

Lr
using namespace std;

327

328 C++: The Complete Reference

.

class ¢l {
int h;
int 1;

public:
cl{int j, int k) { h=j; i=k; } // constructor with 2 parameters
int get_i() {return i;}
int get_h() {return h;}

Y

int main()

{

cl ob[3] = {
cl(l, 2), // initialize
cl(3, 4),
cl(5, 6)

Y

int i;

for(i=0; i<3; i++) {
cout << ob[i]).get_h();
cout << v, .

cout << ob[i].get_i() << "\n";

return 0;

Here, cl's constructor has two parameters and, therefore, requires two arguments. This
means that the shorthand initialization format cannot be used and the long form, shown
in the example, must be employed.

Creating Initialized vs. Uninitialized Arrays

A special case situation occurs if you intend to create both initialized and uninitialized
arrays of objects. Consider the following class.

class cl {
int 1i;
public:
cl(int §) { i=3; }

hapter 13: Arrays, Pointers, References, and the Dynamic Allocation Operators -

int get_i() { return i; }
Y

Here, the constructor defined by cl requires one parameter. This implies that any array
declared of this type must be initialized. That is, it precludes this array declaration:

cl al9]; // error, constructor requires initializers

The reason that this statement isn't valid (as ¢l is currently defined) is that it implies
that cl has a parameterless constructor because no initializers are specified. However,
as it stands, ¢l does not have a parameterless constructor. Because there is no valid
constructor that corresponds to this declaration, the compiler will report an error.

To solve this problem, you need to overload the constructor, adding one that takes
no parameters, as shown next. In this way, arrays that are initialized and those that
are not are both allowed.

class cl {
int 1i;

public:
cl() { i=0; } // called for non-initialized arrays
cl(int 3) { i=j;)} // called for initialized arrays
int get_i() { return i; }

Y

Given this class, both of the following statements are permissible:

cl al[3) = {3, 5, 6}; // initialized

cl a2{34]; // uninitialized

___| Pointers to Objects

Just as you can have pointers to other types of variables, you can have pointers to
objects. When accessing members of a class given a pointer to an object, use the arrow
(—>) operator instead of the dot operator. The next program illustrates how to access an
object given a pointer to it:

#include <iostream>
using namespace std;

C++: The Complete Reference

class cl ¢

int 1i;
public:

cl(int j) { i=j; }

int get_1i() { ceturn 1i; }
}s
int main()

{
cl ob(88), *p;

p = &ob; // get address of ob

cout << p->get_i{(); // use -> to call get_i()

return 0;

As you know, when a pointer is incremented, it points to the next element of its type.
For example, an integer pointer will point to the next integer. In general, all pointer
arithmetic is relative to the base type of the pointer. (That is, it is relative to the type of
data that the pointer is declared as pointing to.) The same is true of pointers to objects.
For example, this program uses a pointer to access all three elements of array ob after
being assigned ob's starting address:

#include <iostream>
using namespace std;

class cl {
int 1i;
public:
cl() { i=0; 1}
cl(int j) { i=3; 1}
int get_i() { return i; }

Y

int main{()
{
cl ob(3] = {1, 2, 3};

iChapter 13: Arrays, Pointers, References, and the Dynamic Allocation Operators 331

cl *p;
int 1i;

p = ob; // get start of array
for{(i=0; 1<3; 1i++) {
cout << p->get_i() << "\n";
p++; // point to next object

return 0;

You can assign the address of a public member of an object to a pointer and then
access that member by using the pointer. For example, this is a valid C++ program
that displays the number 1 on the screen:

#include <iostream>
using namespace std;

class cl {
public:

int 1;

cl(int J) { i=3j; }
Y

int main()
{
cl ob(1l);
int *p;
p = &ob.i; // get address of ob.i

cout << *p; // access ob.i via p

return 0;

Because p is pointing to an integer, it is declared as an integer pointer. It is irrelevant
that i is a member of ob in this situation.

332 C++:The Complete Reference

__| Type Checking C++ Pointers

There is one important thing to understand about pointers in C++: You may assign one
pointer to another only if the two pointer types are compatible. For example, given:

int *pi;
float *pf;

in C++, the following assignment is illegal:
I pi = pf; // error -- type mismatch

Of course, you can override any type incompatibilities using a cast, but doing so
bypasses C++'s type-checking mechanism.

___| The this Pointer

When a member function is called, it is automatically passed an implicit argument that
is a pointer to the invoking object (that is, the object on which the function is called).
This pointer is called this. To understand this, first consider a program that creates

a class called pwr that computes the result of a number raised to some power:

#include <iostream>
using namespace std;

class pwr {
double b;
int e;
double val;
public:
pwr (double base, int exp);
double get_pwr{() { return val; }

Y

pwr: :pwr (double base, int exp)
{

b = base;
e = exp;
val = 1;

if (exp==0) return;
for(; exp>0; exp--) val = val * b;

Chapter 13: Arrays, Pointers, References, and the Dynamic Allocation Operators 333

int main()
{
pwr x(4.0, 2), y(2.5, 1), z(5.7, Q) ;

cout << x.get_pwr() << " ";
cout << y.get_pwr({) << " ";

cout << z.get_pwr () << "\n";

return 0;

Within a member function, the members of a class can be accessed directly, without
any object or class qualification. Thus, inside pwr(), the statement

' b = base;

means that the copy of b associated with the invoking object will be assigned the value
contained in base. However, the same statement can also be written like this:

this->b = base;

The this pointer points to the object that invoked pwr(). Thus, this —>b refers to that
object's copy of b. For example, if pwr() had been invoked by x (as in x(4.0, 2)), then
this in the preceding statement would have been pointing to x. Writing the statement
without using this is really just shorthand.
Here is the entire pwr() constructor written using the this pointer: °

pwr: :pwr (double base, int exp)
{

this->b = base;

this->e = exp;

this-»>val = 1;

if (exp==0) return;

for(; exp>0; exp--)

this->val = this->val * this->b;

}

Actually, no C++ programmer would write pwr() as just shown because nothing
is gained, and the standard form is easier. However, the this pointer is very important

C++: The Comnlete Reference

when operators are overloaded and whenever a member function must utilize a pointer
to the object that invoked it.

Remember that the this pointer is automatically passed to all member functions.
Therefore, get_pwr() could also be rewritten as shown here:

o

double get_pwr() { return this->val; }

In this case, if get_pwr() is invoked like this:

y.get_pwr () ;

then this will point to object y.

Two final points about this. First, friend functions are not members of a class and,
therefore, are not passed a this pointer. Second, static member functions do not have
a this pointer.

___| Pointers to Derived Types

In general, a pointer of one type cannot point to an object of a different type. However,
there is an important exception to this rule that relates only to derived classes. To begin,
assume two classes called B and D. Further, assume that D is derived from the base
class B. In this situation, a pointer of type B * may also point to an object of type D.
More generally, a base class pointer can also be used as a pointer to an object of any
class derived from that base.

Although a base class pointer can be used to point to a derived object, the opposite
is not true. A pointer of type D * may not point to an object of type B. Further, although
you can use a base pointer to point to a derived object, you can access only the members
of the derived type that were inherited from the base. That is, you won't be able to access
any members added by the derived class. (You can cast a base pointer into a derived
pointer and gain full access to the entire derived class, however.)

Here is a short program that illustrates the use of a base pointer to access
derived objects.

#include <iostream>
using namespace std:

class base {
int i;

public:
void set_i(int num) { i=num; }
int get_i() { return i; }

hapter 13: Arrays, Pointers, References, and the Dynamic Allocation Operators 335

}i

class derived: public base {
int Jj;

public:
void set_j(int num) { j=num; }
int get_3j () { return j; }

}i

int main()

{
base *bp;
derived d;

bp = &d; // base pointer points to derived object
// access derived object using base pointer

bp->set_1(10);
cout << bp->get_i() << " ";

/* The following won't work. You can't access elements of
a derived class using a base class pointer.

bp->set_3j(88); // error
cout << bp->get_j(); // erroxr

*/
return O;

As you can see, a base pointer is used to access an object of a derived class.

Although you must be careful, it is possible to cast a base pointer into a pointer of
the derived type to access a member of the derived class through the base pointer. For
example, this is valid C++ code:

// access now allowed because of cast
((Qerived *)bp)->set_j(88);
cout << ((derived *)bp)->get_3j();

It is important to remember that pointer arithmetic is relative to the base type
of the pointer. For this reason, when a base pointer is pointing to a derived object,
incrementing the pointer does not cause it to point to the next object of the derived
type. Instead, it will point to what it thinks is the next object of the base type. This,

336 C++: The Complete Reference

of course, usually spells trouble. For example, this program, while syntactically correct,
contains this error.

// This program contains an error.
#include <iostream>
using namespace std;

class base {
int i;

public:
void set_i(int num) { i=num; }
int get_i() { return i; }

I

class derived: public base {
int j;

public:
void set_j(int num) {j=num;}
int get_j () {return j;}

Y

int main()

{
base *bp;
derived d[2];

d[0].set_1i(1);
dll].set_1(2);

cout << bp->get_i() << " r;
bp++; // relative to base, not derived

cout << bp->get_i(); // garbage value displayed

return 0;

The use of base pointers to derived types is most useful when creating run-time
polymorphism through the mechanism of virtual functions (see Chapter 17).

Chapter 13: Arrays, Pointers, References, and the Dynamic Allocation Operators

___| Pointers to Class Members

C++ allows you to generate a special type of pointer that "points” generically to a
member of a class, not to a specific instance of that member in an object. This sort of
pointer is called a pointer to a class member or a pointer-to-member, for short. A pointer
to a member is not the same as a normal C++ pointer. Instead, a pointer to a member
provides only an offset into an object of the member's class at which that member can
be found. Since member pointers are not true pointers, the . and —> cannot be applied
to them. To access a member of a class given a pointer to it, you must use the special
pointer-to-member operators .* and —>*. Their job is to allow you to access a member
of a class given a pointer to that member.

Here is an example:

#include <iostream>
using namespace std;

class cl {

public:
cl(int i) { val=i; }
int val;
int double_val() { return val+val; }

Yi

int main()

{
int cl::~data; // data member pointer
int (cl::*func)(); // function member pointer
cl obl(l), ob2(2); // create objects

data = &cl::val; // get offset of val
func = &cl::double_val; // get offset of double_val()

cout << "Here are values: ";

cout << obl.*data << " " << ob2.*data << "\n";
cout << "Here they are doubled: ";
cout << (obl.*func) () << " ";

cout << (ob2.*func) () << "\n";

return 0;

337

C++: The Complete Reference

In main(), this program creates two member pointers: data and func. Note
carefully the syntax of each declaration. When declaring pointers to members, you
must specify the class and use the scope resolution operator. The program also creates
objects of cl called ob1 and ob2. As the program illustrates, member pointers may
point to either functions or data. Next, the program obtains the addresses of val and
double_val(). As stated earlier, these “addresses” are really just offsets into an object
of type cl, at which point val and double_val() will be found. Next, to display the
values of each object's val, each is accessed through data. Finally, the program uses
func to call the double_val() function. The extra parentheses are necessary in order
to correctly associate the .* operator.

When you are accessing a member of an object by using an object or a reference
(discussed later in this chapter), you must use the .* operator. However, if you are
using a pointer to the object, you need to use the —>* operator, as illustrated in this
version of the preceding program:

#include <iostream>
using namespace std;

class ¢l ¢

public:

cl(int i) { val=i; }

int wval;

int double_val() { return val+val; }
Yi
int main()

{
int cl::*data; // data member pointer

int (cl::*func)(); // function member pointer
cl obl(l), ob2(2); // create objects
cl *pl, *p2;

pl = &obl; // access objects through a pointer
p2 = &0b2;

data
func

&cl::val; // get offset of val
&cl::double_val; // get offset of double_val()

cout << "Here are values: ";
cout << pl->*data << " " << p2->*data << "\n";

cout << "Here they are doubled: ";

hapter 13: Arrays, Pointers, References, and the Dynamic Allocation Operators

_

cout << {(pl->*func) () << " ";
cout << (p2->*func) () << "\n";
return 0;

In this version, p1 and p2 are pointers to objects of type cl. Therefore, the =>* operator
is used to access val and double_val().

Remember, pointers to members are different from pointers to specific instances of
elements of an object. Consider this fragment (assume that cl is declared as shown in
the preceding programs):

int cl::*d;
int *p;
cl o;

p = &o.val // this is address of a specific val

d = &cl::val // this is offset of generic val

Here, p is a pointer to an integer inside a specific object. However, d is simply an offset
that indicates where val will be found in any object of type cl.

In general, pointer-to-member operators are applied in special-case situations. They
are not typically used in day-to-day programming.

References

C++ contains a feature that is related to the pointer called a reference. A reference is
essentially an implicit pointer. There are three ways that a reference can be used: as
a function parameter, as a function return value, or as a stand-alone reference. Each
is examined here.

Reference Parameters

Probably the most important use for a reference is to allow you to create functions
that automatically use call-by-reference parameter passing. As explained in Chapter 6,
arguments can be passed to functions in one of two ways: using call-by-value or
call-by-reference. When using call-by-value, a copy of the argument is passed to the
function. Call-by-reference passes the address of the argument to the function. By
default, C++ uses call-by-value, but it provides two ways to achieve call-by-reference
parameter passing. First, you can explicitly pass a pointer to the argument. Second,

C++: The Complete Reference

you can use a reference parameter. For most circumstances the best way is to use
a reference parameter.

To fully understand what a reference parameter is and why it is valuable, we will
begin by reviewing how a call-by-reference can be generated using a pointer parameter.
The following program manually creates a call-by-reference parameter using a pointer
in the function called neg(), which reverses the sign of the integer variable pointed to
by its argument.

// Manually create a call-by-reference using a pointer.
#include <iostream>
using namespace std;

void neg(int *i);
int main()
{ .

int x;

x = 10;
cout << x << " negated is ";

neg (&x) ;
cout << x << "\n";

return 0;

void neg(int *1i)
(

In this program, neg() takes as a parameter a pointer to the integer whose sign it
will reverse. Therefore, neg() must be explicitly called with the address of x. Further,
inside neg() the * operator must be used to access the variable pointed to by i. This

is how you generate a 'manual” call-by-reference in C++, and it is the only way to
obtain a call-by-reference using the C subset. Fortunately, in C++ you can automate
this feature by using a reference parameter.

To create a reference parameter, precede the parameter's name with an &. For
example, here is how to declare neg() with i declared as a reference parameter:

void neg(int &1i);

‘hapter 13: Arrays, Pointers, References, and the Dynamic Allocation Operators 341

For all practical purposes, this causes i to become another name for whatever argument
neg() is called with. Any operations that are applied to i actually affect the calling
argument. In technical terms, i is an implicit pointer that automatically refers to

the argument used in the call to neg(). Once i has been made into a reference, it is no
longer necessary (or even legal) to apply the * operator. Instead, each time i is used, it
is implicitly a reference to the argument and any changes made to i affect the argument.
Further, when calling neg(), it is no longer necessary (or legal) to precede the argument's
name with the & operator. Instead, the compiler does this automatically. Here is the
reference version of the preceding program:

// Use a reference parameter.
#include <iostreamn>
using namespace std;

void neg(int &i); // 1 now a reference

int main()

{

int x;

x = 10;

cout << x << " negated is ";

neg(x); // no longer need the & operator

cout << x << "\n";

return 0;

void neg(int &1i)

i = -i: // i is now a reference, don't need *

To review: When you create a reference parameter, it automatically refers to (implicitly
points to) the argument used to call the function. Therefore, in the preceding program,
the statement

actually operates on x, not on a copy of x. There is no need to apply the & operator to
an argument. Also, inside the function, the reference parameter is used directly without

C++: The Complete Reference

the need to apply the * operator. In general, when you assign a value to a reference,
you are actually assigning that value to the variable that the reference points to.

Inside the function, it is not possible to change what the reference parameter is
pointing to. That is, a statement like

inside neg() increments the value of the variable used in the call. It does not cause i
to point to some new location.

Here is another example. This program uses reference parameters to swap the
values of the variables it is called with. The swap() function is the classic example
of call-by-reference parameter passing.

#include <iostream>
using namespace std;

void swap(int &i, int &3);
int main()

{
int a, b, ¢, 4;

a = 1;

b = 2;

c = 3;

d = 4;

cout << "a and b: " << a << " " << b << "\n";
swap(a, b); // no & operator needed

cout << "a and b: " << a << " " << b << "\n";
cout << "¢ and d: " << ¢ << " ' << d << "\n";
swap (c, d);

cout << "c and d: " << ¢c << " " << d << "\n";
return 0;

void swap(int &i, int &3)
{
int t;

t = 1i; // no * operator needed

Chapter 13: Arrays, Pointers, References, and the Dynamic Allocation Operators 343

This program displays the following:

and b: 1 2
and b: 2 1
and d: 3 4
and d: 4 3

Passing References to Objects

In Chapter 12 it was explained that when an object is passed as an argument to a function,
a copy of that object is made. When the function terminates, the copy's destructor is
called. However, when you pass by reference, no copy of the object is made. This
means that no object used as a parameter is destroyed when the function terminates,
and the parameter’s destructor is not called. For example, try this program:

#include <iostream>
using namespace std;

class cl {
int id;
public:
int i;
cl(int 1i);
~cl();
void neg(cl &o) { o.1 = -o0.i; } // no temporary created

cl::cl(int num)
cout << "Constructing " << num << "\n";

id = num;

cl::~cl()
(

cout << "Destructing " << id << "\n";

344 C++: The Complete Reference

int main()

{

cl o(l);
o.i = 10;
o.neg(o);

cout << 0.1 << "\n";

return 0;

Here is the output of this program:

Constructing 1
-10
Destructing 1

As you can see, only one call is made to cl's destructor. Had o been passed by value,
a second object would have been created inside neg(), and the destructor would
have been called a second time when that object was destroyed at the time neg()
terminated.

As the code inside neg() illustrates, when you access a member of a class through
a reference, you use the dot operator. The arrow operator is reserved for use with
pointers only.

When passing parameters by reference, remember that changes to the object inside
the function affect the calling object.

One other point: Passing all but the smallest objects by reference is faster than
passing them by value. Arguments are usually passed on the stack. Thus, large objects
take a considerable number of CPU cycles to push onto and pop from the stack.

Returning References

A function may return a reference. This has the rather startling effect of allowing a
function to be used on the left side of an assignment statement! For example, consider
this simple program:

#include <iostream>
using namespace std;

char &replace(int 1); // return a reference

Chapter 13: Arrays, Pointers, References, and the Dynamic Allocation Operators 345

char s[80] = "Hello There";

int main()

{
replace(5) = 'X'; // assign X to space after Hello
cout << s;
return 0;

char &replace(int 1)

{

return s[i];

This program replaces the space between Hello and There with an X. That is, the
program displays HelloXthere. Take a look at how this is accomplished. First, replace()
is declared as returning a reference to a character. As replace() is coded, it returns a
reference to the element of s that is specified by its argument i. The reference returned
by replace() is then used in main() to assign to that element the character X.

One thing you must be careful about when returning references is that the object
being referred to does not go out of scope after the function terminates.

Independent References

By far the most common uses for references are to pass an argument using call-by-
reference and to act as a return value from a function. However, you can declare

a reference that is simply a variable. This type of reference is called an independent
reference.

When you create an independent reference, all you are creating is another name
for an object. All independent references must be initialized when they are created. The
reason for this is easy to understand. Aside from initialization, you cannot change
what object a reference variable points to. Therefore, it must be initialized when it
is declared. (In C++, initialization is a wholly separate operation from assignment.)

The following program illustrates an independent reference:

#include <iostream>
using namespace std;

346 C++: The Complete Reference

int main()
{
8

int a;

int &ref = a; // independent reference
a = 10;

cout << a << " " << ref << "\n";

ref = 100;

cout << a << " " << ref << "\n";

int b = 19;
ref = b; // this puts b's value into a

cout << a << " " << ref << "\n";
;

ref--; // this decrements a
// it does not affect what ref refers to

cout << a << " " << ref << "\n";

return 0;

The program displays this output:

10 10
100 100
19 19
18 18

Actually, independent references are of little real value because each one is, literally,
just another name for another variable. Having two names to describe the same object
is likely to confuse, not organize, your program.

References to Derived Types

Similar to the situation as described for pointers earlier, a base class reference can be
used to refer to an object of a derived class. The most common application of this is
found in function parameters. A\ base class reference parameter can receive objects of
the base class as well as any other type derived from that base.

hapter 13: Arrays, Pointers, References, and the Dynamic Allocation Operators

Restrictions to References

|

J—

There are a number of restrictions that apply to references. You cannot reference another
reference. Put differently, you cannot obtain the address of a reference. You cannot create
arrays of references. You cannot create a pointer to a reference. You cannot reference
a bit-field.

A reference variable must be initialized when it is declared unless it is a member
of a class, a function parameter, or a return value. Null references are prohibited.

A Matter of Style

When declaring pointer and reference variables, some C++ programmers use a unique
coding style that associates the * or the & with the type name and not the variable. For
example, here are two functionally equivalent declarations:

int& p; // & associated with type
int &p; // & associated with variable

Associating the * or & with the type name reflects the desire of some programmers
for C++ to contain a separate pointer type. However, the trouble with associating the &
or * with the type name rather than the variable is that, according to the formal C++
syntax, neither the & nor the * is distributive over a list of variables. Thus, misleading
declarations are easily created. For example, the following declaration creates one, not
two, integer pointers.

int* a, b;

Here, b is declared as an integer (not an integer pointer) because, as specified by the
C++ syntax, when used in a declaration, the * (or &) is linked to the individual variable
that it precedes, not to the type that it follows. The trouble with this declaration is that
the visual message suggests that both a and b are pointer types, even though, in fact,
only a is a pointer. This visual confusion not only misleads novice C++ programmers,
but occasionally old pros, too.

It is important to understand that, as far as the C++ compiler is concerned, it doesn't
matter whether you write int *p or int* p. Thus, if you prefer to associate the * or &
with the type rather than the variable, feel free to do so. However, to avoid confusion,
this book will continue to associate the * and the & with the variables that they modify
rather than their types.

C++'s Dynamic Allocation Operators

C++ provides two dynamic allocation operators: new and delete. These operators are
used to allocate and free memory at run time. Dynamic allocation is an important part

347

C++: The Complete Reference

of almost all real-world programs. As explained in Part One, C++ also supports
dynamic memory allocation functions, called malloc() and free(). These are included
for the sake of compatibility with C. However, for C++ code, you should use the new
and delete operators because they have several advantages.

The new operator allocates memory and returns a pointer to the start of it. The
delete operator frees memory previously allocated using new. The general forms of
new and delete are shown here:

p_var = new fype;,
delete p_var;

Here, p_var is a pointer variable that receives a pointer to memory that is large enough
to hold an item of type typc.

Since the heap is finite, it can become exhausted. If there is insufficient available
memory to fill an allocation request, then new will fail and a bad_alloc exception will be
generated. This exception is defined in the header <new>. Your program should handle
this exception and take appropriate action if a failure occurs. (Exception handling is
described in Chapter 19.) If this exception is not handled by your program, then your
program will be terminated.

The actions of new on failure as just described are specified by Standard C++. The
trouble is that not all compilers, especially older ones, will have implemented new in
compliance with Standard C++. When C++ was first invented, new returned null on
failure. Later, this was changed such that new caused an exception on failure. Finally,
it was decided that a new failure will generate an exception by default, but that a null
pointer could be returned instead, as an option. Thus, new has been implemented
differently, at different times, by compiler manufacturers. Although all compilers will
eventually implement new in compliance with Standard C++, currently the only way
to know the precise action of new on failure is to check your compiler's docuinentation.

Since Standard C++ specifies that new generates an exception on failure, this is
the way the code in this book is written. If your compiler handles an allocation failure
differently, you will need to make the appropriate changes.

Here is a program that allocates memory to hold an integer:

#include <iostream:-
#include <new>
using namespace std;

int main()
w {
int *p;

try

‘hapter 13: Arrays, Pointers, References, and the Dynamic Allocation Operators

p = new int; // allocate space for an int
} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

return 1;

——

*p = 100;

cout << "At " << p << " ";

cout << "is the value " << *p << "\n";
delete p;

return 0;

This program assigns to p an address in the heap that is large enough to hold an
integer. It then assigns that memory the value 100 and displays the contents of the
memory on the screen. Finally, it frees the dynamically allocated memory. Remember,
if your compiler implements new such that it returns null on failure, you must change
the preceding program appropriately.

The delete operator must be used only with a valid pointer previously allocated by
using new. Using any other type of pointer with delete is undefined and will almost
certainly cause serious problems, such as a system crash.

Although new and delete perform functions similar to malloc() and free(), they
have several advantages. First, new automatically allocates enough memory to hold an
object of the specified type. You do not need to use the sizeof operator. Because the size
is computed automatically, it eliminates any possibility for error in this regard. Second,
new automatically returns a pointer of the specified type. You don't need to use an
explicit type cast as you do when allocating memory by using malloc(). Finally, both
new and delete can be overloaded, allowing you to create customized allocation systems.

Although there is no formal rule that states this, it is best not to mix new and delete
with malloc() and free() in the same program. There is no guarantee that they are
mutually compatible.

Initializing Allocated Memory

You can initialize allocated memory to some known value by putting an initializer
after the type name in the new statement. Here is the general form of new when an
initialization is included:

p_var = new var_type (initializer);

350 C++: The Complete Reference

Of course, the type of the initializer must be compatible with the type of data for which
memory is being allocated.
This program gives the allocated integer an initial value of 87:

#include <iostream>
#include <new>
using namespace std;

int main()

{
int *p;

try {
p = new int (87); // initialize to 87
} catch (bad_alloc xa) {
cout << "Allocation Failure\n";
return 1;

cout << "At " << p << " *;
cout << "is the value " << *p << "\n";
delete p;
return 0;

Allocating Arrays

You can allocate arrays using new by using this general form:
p_var = new array_type [sizel;

Here, size specifies the number of elements in the array.
To free an array, use this form of delete:

delete [] p_var;

Here, the [] informs delete that an array is being released.
For example, the next program allocates a 10-element integer array.

Chapter 13: Arrays, Pointers, References, and the Dynamic Allocation Operators 351

#include <iostream>
#include <new>
using namespace std;

int main()

{
int *p, 1;
try {
p = new int [10]; // allocate 10 integer array
} catch (bad_alloc xa) {
cout << "Allocation Failurei\n";
return 1;
}
for(i=0; 1<10; i++)
pli] = 1i;
for (1=0; i<10; i++)
cout << pl[i] << " ";
delete] p; // release the array

Notice the delete statement. As just mentioned, when an array allocated by new
is released, delete must be made aware that an array is being freed by using the [].
(As you will see in the next section, this is especially important when you are allocating
arrays of objects.)

One restriction applies to allocating arrays: They may not be given initial values.
That is, you may not specify an initializer when allocating arrays.

Allocating Objects

You can allocate objects dynamically by using new. When you do this, an object is
created and a pointer is returned to it. The dynamically created object acts just like
any other object. When it is created, its constructor (if it has one) is called. When the
object is freed, its destructor is executed.

352 C++: The Complete Reference

Here is a short program that creates a class called balance that links a person's
name with his or her account balance. Inside main(), an object of type balance is
created dynamically.

#include <iostream>
#include <new>
#include <cstring>
using namespace std;

class balance {
double cur_bal;
char name([80] ;
public:
void set(double n, char *s) {
cur_bal = n;
strepy (name, s);

void get_bal (double &n, char *s) {
n = cur_pal;
strcpy (s, name) ;

Y

int main()

{
balance *p;
char s[80];
double n;

try f
p = new balance;

} catch (bad_alioc xa) {
cout << "Allocation Failure\n";
return 1;

p->set (12387.87, "Ralph Wilson");

p->get_bal(n, s);

cout << s << "'s balance is: " << n;

hapter 13: Arrays, Pointers, References, and the Dynamic Allocation Operators 353

Because p contains a pointer to an object, the arrow operator 1s used to access members
of the object.

As stated, dvnamically allocated objects mayv have constructors and destructors.
Also, the constructors can be parameterized. Examine this version of the previous
program:

#include <iostream>

#include <nsw>

#include <cstring>
using namespace std;

class balance {
double cur_bal;
char name[80];

public:
balance(double n, char *s) {
cur_bal = n;
strecpy (name, s);

}

~palance() {
cout << "Destructing ";
cout << name << "\n";

}

void get_bal (double &n, char *s) {
n = cur_bal;

strepy (s, name) ;

int main()
balance *p;
char s iR :

GO Le T

354

C++: The Complete Reference

// this version uses an initializer
try {

p = new balance (12387.87, "Ralph Wilson");
} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

return 1;

p->get_bal(n, s);

cout << s << "'s balance is: " << n;
cout << "\n";

delete p;

return 0;

Notice that the parameters to the object’s constructor are specified after the type name,
just as in other sorts of initializations.

You can allocate arrays of objects, but there is one catch. Since no array allocated by
new can have an initializer, you must make sure that if the class contains constructors,
one will be parameterless. If you don't, the C++ compiler will not find a matching
constructor when you attempt to allocate the array and will not compile your program.

In this version of the preceding program, an array of balance objects is allocated,
and the parameterless constructor is called.

#include <iostream>
#include <new>
#include <cstring>
using namespace std;

class balance ({
double cur_bal;
char name([80];
public:
balance(double n, char *s) {
cur_bal = n;
strcpy (name, s);
}

balance() {} // parameterless constructor

hapter 13: Arrays, Pointers, References, and the Dynamic Aflocation Operators 355

A

~balance () {
cout << "Destructing “;
cout << name << "\n";

}

void set(double n, char *s) {
cur_bal = n;
strcpy (name, s);

}

void getwbalkdouble &n, char *s) {
n = cur_bal;
strcpy (s, name);

Y

int main()

{
balance *p;
char s{807];
double n;

int 1i;

try |

p = new balance [3]; // allocate entire array
} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

return 1;

// note use of dot, not arrow operators
pl0].set(12387.87, "Ralph Wilson");
pll].set(144.00, "A. C. Conners");
pl2).set(-11.23, "I. M. Overdrawn");

for(i=0; i<3; 1i++) {
plil.get_bal(n, s);

cout << s << "'s balance is: " << n;

cout << "\n";

delete [] p;
return 0;

356 C++: The Complete Reference

The output from this program is shown here.

Ralph Wilson's balance is: 12387.9
A. C. Conners's balance is: 144

I. M. Overdrawn's balance is: -11.23
Destructing I. M. Overdrawn
Destructing A. C. Conners
Destructing Ralph Wilson

One reason that you need to use the delete [] form when deleting an array of
dynamically allocated objects is so that the destructor can be called for each object
in the array.

The nothrow Alternative

In Standard C++ it is possible to have new return null instead of throwing an exception
when an allocation failure occurs. This form of new is most useful when you are compiling
older code with a modern C++ compiler. It is also valuable when you are replacing calls
to malloc() with new. (This is common when updating C code to C++.) This form of
new is shown here:

p_var = new(nothrow) type;

Here, p_var is a pointer variable of type. The nothrow form of new works like the
original version of new from years ago. Since it returns null on failure, it can be
"dropped into” older code without having to add exception handling. However,
for new code, exceptions provide a better alternative. To use the nothrow option,
you must include the header <new>.

The following program shows how to use the new(nothrow) alternative.

// Demonstrate nothrow version of new.
#include <iostream>

#include <new>

using namespace std;

int main ()

{
int *p, 1i:
p = new(nothrow) int[32]; // use nothrow option
if(tp) |

cout << "Allccation failure.\n"“;

hapter 13: Arrays, Pointers, References, and the Dynamic Allocation Operators

return 1;

for(1=0; 1<32; i++) plil = 1i;
for(i=0; i<32; 1i++) cout << p{i] << " ";

delete [] p; // free the memory

return 0;

As this program demonstrates, when using the nothrow approach, you must check the
pointer returned by new after each allocation request.

The Placement Form of new

There is a special form of new, called the placement form, that can be used to specify an
alternative method of allocating memory. It is primarily useful when overloading the
new operator for special circumstances. Here is its general form:

p_var = new (arg-list) type;

Here, arg-list is a comma-separated list of values passed to an overloaded form of new.

357

